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Abstract

Background
In an unprecedented effort to centralize medical data, the Infectious Disease Data Observatory
(IDDO) curated the largest clinical dataset on Ebola Virus Disease (EVD). Until now, this
neglected emerging disease has been studied on small, fragmented datasets which dilutes
statistical power and results in poor generalizability.

Aim
We join IDDO’s effort to standardize and analyse this large data set with the aim of improving
probabalistic diagnosis and risk stratification for Ebola using machine learning models.

Methods
From the total curated data set of 13562 patients, this study selects 2/12 subsets representing
3370 patients from 3 Ebola treatment centers erected during the 2014-16 West African EVD
epidemic. We develop a proof of concept data cleaning pipeline, provide descriptive statistics
and build a series of interpretable machine learning (ML) models for diagnosis and risk
stratification of EVD. The main ML models compared are logistic regression, SVM, KNN,
decision trees, extra trees and random forest. Labels for diagnosis was PCR-confirmed EVD in a
blood sample taken at triage, and risk stratification was based on the probability of death and
computed only for the EVD+ subgroup. Features used were clinical signs and symptoms as well
as laboratory measures taken on day 0.

Findings
Across all subsets of the data, the best diagnostic model had an AUC of 0.84 for diagnosis and
0.85 for prognosis. These results were obtained using ensemble methods such as Random Forest
and Extra trees. Excellent results have also been reached with simpler methods such as logistic
regression that reached an AUC of 0.77 for diagnosis and 0.84 for prognosis with the benefit of
being easier to train.

Conclusion
This work is a template to build a single, standardized and interoperable aggregated dataset on
which we can derive and compare local and global predictive models and explore the possibility
decentralized learning.
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Chapter 1

Introduction

Ebola Virus disease
The Zaire Ebolavirus appeared in 1976 with 2 simultaneous outbreaks in Nzara, South Sudan
and Yambuku, a village near the Ebola River in the Democratic Republic of Congo (DRC) [3].
Four decades after its discovery it has killed more than 15 000 people across Africa with a fatality
rate averaging 83% [4] but still little is known about this disease. The 2014-2016 outbreak is the
largest outbreak recorded with more than 28,000 cases and 11,000 deaths. It started in Guinea
and crossed over the borders to Sierra Leone and Liberia. Currently there is an ongoing outbreak
in the Democratic Republic of Congo where medical coverage is limited by insecurity, poor
education and poverty [5]. Even with the advent of ring vaccination [6], the current epidemic
took over a year to control. Ebola spreads within the population via direct contact with body
fluid (blood, vomit, feces) of infected persons or objects contaminated by them (fomites). The
incubation period varies from 2 to 21 days, transmission is usually only during symptomatic
disease and asmyptomatic transmission seems to be rare [7].

A diagnostic and prognostic challenge
One major problem of Ebola virus disease (EVD) is that it’s hard to distinguish from other
diseases like Malaria, typhoid and meningitis [8]. Indeed, the majority of patients admitted to
Ebola treatment centers for suspected infection did not have Ebola. The same issue exists for
prognostic triage. Clincal outcomes range from asymptomatic to fatal and case fatality rates are
dependent on their environment. For instance, mortality rates in high resource settings from
just 20% compared to 60-80% in West Africa and previous outbreak [9].

Improved probabalistic triage for diagnosis and prognosis, would not only limit the risk
of nosocomial infections but also better allocate resources to those who need it most, and
possibly reduce mortality in resource limited settings. Predictive models are low cost and easy
to implement, however many published were based on single study sites with small localised
populations, yielding results that are poorly generalizable [10].

There is a need to present a general framework to harmonize the data from different studies
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in order to compute models. Based on the harmonized data, these models will predict the likely
course of a patient’s health.

The need for adaptive predictions
After the epidemic, many scoring systems were derived to predict survival outcomes and di-
agnosis from the various study sites. Using small data sets and simple models such as logistic
regression produced encouraging results able to replicate clinician assessment, with an accuracy
between 0.64 and 0.74 [11]. However, these static models risk becoming irrelevant in changing
environments. Indeed, Ebola disease presentation and outcomes was shown to be not only
highly heterogeneous across sites, but also in time: where outcomes evolved with emerging
strains, changing health care seeking behaviour and health care capacity [12].

As machine learning (ML) models are able to learn from incoming data, they represent a
promising approach to this issue, whereby predictions can evolve with their environments.
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Chapter 2

Aim and Objectives

In this study we aim to create dynamic probabilistic diagnostic and prognostic triage for Ebola
Virus Disease using machine learning on a subset of the largest Ebola data set in the world.

1. Develop a data cleaning pipeline and assess the quality of the curated and raw data .

2. Perform descriptive statistics of the local studies and aggregated data

3. Build a series of local ML models for diagnosis and risk stratification of Ebola using on a
representative subset of the data

4. Optimize and compare the above models, interpret the results, and assess their generaliz-
ability.

5. Summarize the work and identify the next steps.
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Chapter 3

Data

3.1 Study design

This retrospective cohort study derives ML models for EVD diagnosis and prognosis.

• Outcomes. Diagnostic outcomes are EVD+ or EVD- and based on a PCR test of blood drawn
on the day of triage. All patients arriving at triage are included in this model. Prognosis is
survival or death of EVD+ patients during their admission at the treatment center.

• Features. Features used for prediction are demographics (age, sex) geographic location,
date, clinical signs/symptoms collected on day 0 of triage (presence/absence of fever, gas-
trointestinal complaints, pain etc), contact tracing information and some basic paraclinical
tests (malaria rapid test)

3.2 Data sets

All the studies have been centralized by IDDO each comprises individual level data from 13562

individuals across 13 different studies at 16 cities across 3 countries. (See Figure 3.1). Patients
ranged in age from 0 to 100 years and were distributed across 3 countries (4471 patients in Sierra
Leone, 3623 patients in Liberia and 5468 patients in Guinea).

The studies are summarized below and those selected for use in this project are highlighted
in colour.
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Table 3.1 – Summary of the cohort origin

Study Identifier Contributor Country City Number of patients
EQJJGF Liberia Monrovia 1907

EGOYQN Guéckédou 2500
EJPDEJ

Médecins Sans
Frontières

(MSF)
Guinea

Donka 2301
Bong 550

Liberia
Margibi 292

Port Loko 549
Kambia 273

ERFCVU

International
Medical

Corps
(IMC)

Sierra Leone
Makeni 1085

EOPNOJ

Alliance for
International

Medical Action
(ALIMA)

Guinea Nzérékoré 147

EORKWS Sierra leone Port Loko 35
EBPOHA

Oxford University
Liberia Monrovia 4

ESYADD
Save the Children

International
(SCI)

Sierra leone Kerry Town 456

ESBMRS
Institute of Tropical
Medicine Antwerp

Guinea Donka 102

EIXUZQ Liberia Foya 870
EPGLFV

Médecins Sans
Frontières (MSF) Sierra leone Freetown 171

EFFVXT
Institute of

Tropical
Medicine Antwerp

Guinea Donka 418

Bo 524
Kailahun 1219EUZJTB

Médecins
Sans Frontières

(MSF)
Sierra leone

Magburaka 159
12 Studies 6 providers 3 countries 16 cities 13562 patients

In this study, we prepare 2 datasets for analysis, consisting of 3370 patients (25 % of the entire
dataset). These datasets were selected due to their large size, accessible data dictionary and
larger proportion of EVD+ patients (more balanced diagnostic label distribution).

To be concise, only the models developed for the largest dataset will be presented in this
report (EGOYQN). However, in a final section we will present some key results obtained with the
other study for comparative analysis.
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3.3 The EGOYQN study

This study was undertaken by Médecins Sans Frontières (MSF) in Guinea from January 2014 to
November 2015 with 2500 patients among which 1372 patients are EVD positive. In this dataset
we have at our disposal demographic, temporal and geographic data, clinical signs, symptoms
and outcomes (See [13] for descriptive analysis).

3.3.1 Outcomes

• Diagnostic outcomes: By only keeping the patients with a confirmed final diagnosis, 1721
patients with 1141 patients EVD positive (1141 / 1721 = 0.66)

• Prognosis labels : By only keeping the Ebola positive patients with a confirmed final vital
status we get 1244 patients with 803 patients deceased (803 / 1244 = 0.65)

(a) Diagnosis data (b) Prognosis data

Figure 3.1 – Outcome distribution

3.3.2 Geographic distribution

The patients are admitted at two centers in Macenta (379 /2500 = 0.15) and Guéckédou
(n=1244/2500 = 0.49), additionally, 387 patients were first admitted in Macenta’s center and
then transferred to Guéckédou. The admission center for 490 patients is unknown. To under-
stand the evolution of the admission see Figure 3.2.

A majority of patients reside in Macenta (969 / 2500 = 0.39) and Guéckédou (656 / 2500 =
0.26) followed by Nzérékoré (271 / 2500 = 0.11), Kérouane (194 / 2500 = 0.08), Kissidougou (107 /
2500 = 0.04) and other prefectures.
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Figure 3.2 – Distribution of the admission day

3.3.3 Demographic composition

Sex. A small majority (1303 / 2500 = 0.52) are females, (1125 / 2500 = 0.45) are males and for 72
patients the sex is unknown.

Occupation. Although 3/5 of the job titles are unknown, house workers (428 / 2500 = 0.17) and
farmers (189 / 2500 = 0.08) are particularly frequent.

Age. The age is unknown for 70 patients and the median age is 30 years.

Figure 3.3 – Distribution of age

11



3.3.4 Dealing with missing data

Removing data points

Due to missing features: We exclude 612/2500 (25%) patients from the cohort due to absent
triage symptomatology. Symptom distribution for the remaining 1888 patients is tabulated
below according to missingness (see Table 3.2). The group 1 symptoms have almost no missing
values. Excluding 69 (3%) patients results in features with no missing values in this group. Thus
1819/2500 (73%) patients remain.

Due to missing outcomes: As described previously, only patients with outcomes recorded are
retained 76 EVD PCR results are missing, resulting in 1721 (69%) patients being retained for the
diagnosis model. 553 EVD+ patients did not have a confirmed final vital status (521 unknown, 28
transferred and 4 escaped) resulting in 1244 patients retained for the prognostic model.

Feature elimination and imputation

Clinical features. Grouping features according to their missingness, (See Table 3.2) the first
group of symptoms have almost all observations known, the second group of symptoms are
known only for 25 % and finally the last group is missing for 96% of them. Features of this
latter group are dropped due to statistical irrelevance. For 1364/1797 patients, all of the group
2 symptoms are marked as "unknown". Using One hot encoding we group them all in a single
Unknown feature with the value of 1 if all of the symptoms of group 2 are Unknown. There are 22
patients who don’t have them all unknown but have only at least one value of group 2 symptoms
that isn’t unknown. We decide to remove them, 1797/2500 (72%) patients remain.

Redundancy. Some symptoms are redundant and very similar to each other. Vomiting and
Nausea don’t bring additional information to the feature Nausea / Vomiting. As they have 75% of
Unknown values we therefore decided to not use these symptoms as features. We also drop the
symptom Fatigue that is redundant and collinear with Asthenia.

Demographics. For the age 11/1797 patients had missing values which we impute with the
median (30 years). Sex is missing from 4 patients.

Referral time is computed as the number of days between the start of the symptoms and their
first admission (see Figure 3.4). The dates are converted to integers representing the day of the
year. We have 1223 missing values of date of admission in Macenta, 203 missing values of date of
admission in Guéckédou, 1224 missing values of referral time, 1223 missing values of date of
contact with suspected case and 1616 missing values of date visit of funeral. They are imputed
with the default 0 value. In the event of transfer (i.e. with two dates of admission in 2 different
centers Macenta and Guéckédou) referral time is computed according to the first admission.
The distribution of referral time is shown in the figure below.
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Table 3.2 – Symptoms distribution

Group Symptom Yes No Unknown
Fever 0.69 0.30 0.01

Nausea / Vomiting 0.43 0.56 0.01
Diarrhea 0.46 0.53 0.01
Asthenia 0.67 0.32 0.01
Hiccups 0.07 0.92 0.01

Bleeding/Hemorrhage 0.12 0.87 0.01
Headache 0.49 0.49 0.2

Abdominal pain 0.36 0.62 0.02
Arthralgia 0.40 0.58 0.2

Group 1

Anorexia 0.52 0.46 0.02
Myalgia 0.12 0.13 0.75
Fatigue 0.20 0.05 0.75

Vomiting 0.12 0.13 0.75
Nausea 0.13 0.12 0.75

Breathing difficulties 0.04 0.21 0.75
Dysphagia 0.05 0.20 0.75
Chest pain 0.05 0.20 0.75

Cough 0.05 0.20 0.75
Sore throat 0.05 0.20 0.75

Rashes 0.01 0.23 0.76
Confusion / Disorientation 0.01 0.23 0.76

Coma / Loss of consciousness 0.01 0.23 0.76
Conjunctivitis (red eye) 0.06 0.17 0.76

Jaundice (yellow connective
tissues / gums / skin)

0.01 0.23 0.76

Group 2

Retro-orbital pain / photophobia 0.01 0.22 0.76
Hematomas / petechiae / purpura 0 0.03 0.97

Bleeding gums 0 0.0.2 0.97
Bleeding from injection sites 0 0.03 0.97

Epistaxis 0 0.03 0.97
Meleana 0 0.03 0.97

Hematemesis 0 0.03 0.97
Dark vomiting 0 0.03 0.97

Hemoptysis 0 0.03 0.97
Vaginal bleeding 0 0.03 0.97

Group 3

Hematuria 0 0.03 0.97
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Figure 3.4 – Distribution of referral time
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Chapter 4

Methods

4.1 Preprocessing and model selection

Train and test split We do not have a balanced number of samples for each class, this is a
characteristic that we want to keep when we split the data set into train and test sets. We
therefore use a stratified split with a test set proportion of 0.2. The cross validation set will be
constructed using a 3-repeated stratified 5-fold split on the train set to tune the parameters.

Feature engineering We scale the numerical training data (age and dates) in the interval range
[0,1] using a min max transformation. The Yes/No questions like patient currently hospitalized,
link with a suspected case, visit of funeral and contact with body are one hot encoded to handle
the missing values (Yes, No, Unknown).

Model selection In practice model selection is bit a more complicated than just select the ’best’
algorithm, it’s rather a process that we can decompose in three parts:

• Feature selection to obtain a set of predictive features

• Metric and family of algorithms selection

• Hyper parameter tuning for performance optimization

4.2 Feature selection

After encoding the data, we obtain 104 features but some of them are not statistically significant
or can be sometimes very similar to other features. In order to avoid multicollinearity, overfitting
and the curse of dimensionality, we proceed to a series of transformation to reduce the dimension
of the data.
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4.2.1 Variance threshold

We first apply a filter where we consider the variance of the features. To be useful, a features
should discriminate between several samples so a feature with always the same value is not
useful. All features with a variance below the threshold value 0.1 are removed (n=24).

4.2.2 Removing correlated features

Correlated features (see Figure 4.2) make the loss landscape ill-conditioned, by removing them
we facilitate the convergence of the optimization algorithms and also avoid the problem of
singular matrix. More importantly, our main objective is to have interpretable models and we
lose this property when we deal with correlated features as we can’t distinguish direct effect
from indirect ones. If we take the example of regression analysis, we consider the coefficient
of the dependent variable as the mean change needed from that variable to cause one unit
change to the dependent variable while keeping all other dependent variables constant. When
the features are correlated it’s difficult to keep that assumption, as changing one variable will
also influence the others. Consequently, the collinearity will not affect the precision of the model
but rather the coefficients and their p-values in other words the model statistical power. We
set a correlation threshold of 0.8 and unsurprisingly, we find that the features representing the
residence prefecture and the prefecture where the patient got sick are almost equivalent, after
removing also other correlated features, we end up excluding 9 features.

(a) Diagnosis data (b) Prognosis data

Figure 4.1 – Univariate correlation with the dependent variable
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Figure 4.2 – Correlation between features
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Figure 4.3 – RadViz of diagnosis data

Figure 4.4 – Radviz of prognosis data

The sample distribution in the feature space (Figure 4.3 and Figure 4.4) highlights the diffi-
culty of distinguishing the outcomes in this high dimension space. Nonetheless, we can observe
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some differences and patterns that can allow us to differentiate between the two classes, a task
that can be facilitated if we reduce the number of features. The simplest method would be to
only keep the features that are correlated with the outcomes (see Figure 4.1) but this simple
method would only capture linear interactions. In the following parts, we develop several other
feature selection methods and present their benefits.

4.2.3 Recursive Feature Elimination (RFE)

The Recursive Feature Elimination (RFE) selects the best features by recursively removing the
features with the least importance and constructing model with those that remain. For each
model that has a feature importance metric we cross validate the number of features we keep.
We can see an example of cross validation for logistic regression in Figure 4.5.

Table 4.1 – Results of the cross validation for the number of features selected by RFE

Task Models
Number

of features
selected

AUC ROC
CV

Logistic 41 0.78
Diagnosis Decision

tree
19 0.70

Logistic 23 0.71
Prognosis Decision

tree
1 0.60

Figure 4.5 – Tuning of the number of features selected with RFE on logistic regression
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4.2.4 Lasso selection and Analysis of Variance (ANOVA)

Linear regression with L1 norm regularization also known as Lasso regression promotes sparsity
of features which we can leverage to select features. The features with the highest absolute
coefficients are considered the most important. It results with 11 features with zero coefficients.

We want to find a score for each feature that determines how much it discriminates the
dependent variable. Intuitively, to be a good discriminator a feature must have two properties.
It should separate the means in order to have the two classes far from each other and each
class should be grouped compactly together with a small within variance for each class. .The
F-statistic captures these aspects with an increasing numerator when the classes are far a way
and a decreasing denominator when the classes are compact.

For each model we use cross validation to find the best number of features to keep, ordered
by their F-test score.

F =
between groups variance

within group variance
(4.1)

In Table 4.2 for diagnosis, bagging trees performs well with very few features (17). The decision
tree and KNN perform relatively well also compared to other models as they use only 1/5 of their
features.

Diagnosis The features that the decision tree selects for diagnosis:

• Chronological features: Date of admission in Macenta center

• Geographical features: Residence prefecture is Gueckedou, Residence prefecture is Ma-
centa

• Symptoms: Diarrhoea, Myalgia, Conjunctivitis and Weakness

• The feature that informs if the group 2 symptoms are all unknown

• Patient is currently hospitalized

• Referral time

• Contact tracing information with suspected cases: Date of contact and if she/he is dead

KNN uses the same features as above along with 3 additional ones: anorexia, date of admis-
sion in Gueckedou center and if the patient attended a funeral.

Prognosis For prognosis, with an AUC of 0.65 and using a subsset of 11 features SVM performs
as well as using all the features. The features used are:
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• Chronological features: Date of admission in Macenta center and Gueckedou center

• Geographical features: Residence prefecture is Gueckedou, residence prefecture is Macenta
and whether the prefecture where the patient got sick is Beyla

• Symptoms: Diarrhoea, abdominal pain, joint pain and confusion

• Patient is a farmer

• Referral time

We remark that similarly as for Recursive Feature Elimination the decision tree only uses 1
feature for prognosis it’s the day of admission in Gueckedou center. This points to the fact that
the model is just predicting daily prevalence rather than prognosis.

Table 4.2 – Cross validation for number of features selected ordered by F-test score

Task Models
Number

of features
selected

Best mean
AUC ROC

CV
SVM 61 0.79
KNN 15 0.76

Logistic 61 0.78
Decision

tree
12 0.75

Bagging
trees

17 0.80

Extra
trees

58 0.78
Diagnosis

Random
Forest

59 0.81

SVM 11 0.66
KNN 20 0.66

Logistic 22 0.70
Decision

tree
1 0.60

Bagging
trees

30 0.67

Extra
trees

37 0.64
Prognosis

Random
Forest

37 0.68
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Figure 4.6 – The coefficients of Lasso regression and the F-statistics

Figure 4.6 shows clearly that the features are not ranked in the same way between Lasso
elimination and F-test. Indeed, light sensitivity for example has the biggest coefficient in lasso
elimination whereas its F-score is null. This is can be interpreted by the fact that the two methods
don’t prioritize the same properties when they select features.
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4.2.5 Random Forest Feature Importance and Permutation importance

In decision tree, every node states a rule to split the data with a respect to a feature. The objective
is to maximize purity of the leaves or equivalently to minimize the Gini impurity. When training
a tree we can compute how much each feature contributes to decreasing the weighted impurity.

The permutation feature importance is the decrease in a model score when a single feature
value is randomly shuffled. The decrease of the model score shows how much the the feature
participates in the predictions. The advantage of that technique is that it’s model agnostic as it
only affects the data.

Figure 4.7 – Feature importance with permutation on Random Forest
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The permutation importance plot shows that permuting a feature drops the AUC ROC by at
most 0.025, which would suggest that none of the features are important.

When features are collinear, permuting one feature will have a small effect on the model’s per-
formance because it can get the same information from a correlated feature. One way to handle
multicollinear features is by performing hierarchical clustering on the Spearman’s correlations,
picking a threshold, and keeping a single feature from each cluster.

Figure 4.8 – Hierrarchical Agglomerative Clustering (HAC) with Ward’s linkage for diagnosis
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We compute a Hierarchical Agglomerative Clustering (HAC) with Ward’s linkage to approxi-
mate the partition minimizing the error sum of squares. The distance between two clusters is
how much the sum of squares will increase when we merge them. With hierarchical clustering
having initially every point is in its own cluster, the sum of squares starts out at zero and then
grows as we merge clusters. Ward’s method keeps this growth as small as possible.

Finally, we manually pick a threshold by visual inspection of the dendrogram to group our
features into clusters and choose a feature from each cluster to keep. If we set the threshold to 1
for diagnosis, eight features are removed and 53 features remain while for prognosis 7 features
are removed and 55 features remain.

4.3 Metrics (optional)

We advocate here the choice to evaluate the models and tune their parameters using the AUC
ROC metric. A reader familiar with machine learning can skip this part, for the others: bear with
me for few minutes.

Let’s start by defining a "ground" naive choice that we should aim to improve. As we have
seen before, we have an unbalanced set, in any situation with unbalanced sets, a naive estimator
that assumes the majority class to be a solution, will give us a very high accuracy.

Before we continue, let’s discuss the few most important metrics to evaluate our model, and
how we can present the results:

• Accuracy: Measures how well our model predicts all the classes, regardless of balance. It is
the ratio of "correctly predicted" results, versus the entire sample.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.2)

If we are agnostic about our categories, aiming for the highest accuracy possible is generally
good enough. However, in medicine, where preliminary tests might indicate the presence
or absence of a disease. If the prevalence is 1%, that means that 99% of accuracy will
be predicted by just discarding the disease. We are however not interested in correctly
predicting 99% of the cases, but rather on finding as many as possible of the remaining 1%.
In other words, it’s better to be wrongly diagnosed with a rare disease for further testing,
rather than be wrongly diagnosed as healthy when you actually have the disease.

• Precision: Measures the fraction of actually positive cases among those predicted to be
positive.

Precision =
TP

TP + FP
(4.3)

Precision is important when false positives are more costly than false negatives, not our

25



case. A trivial way to have perfect precision is to make one single positive prediction
and ensure it is correct (precision = 1/1 = 100%). This would not be very useful since the
classifier would ignore all but one positive instance. So precision is typically used along
with another metric, recall.

• Recall: Measures the fraction of actually positive cases found from all positive cases.

Recall =
TP

TP + FN
(4.4)

Recall is important when we aim to find the positive cases, like in this study.

• F1 score: It’s the harmonic mean of precision and recall, usually a good metric of the
balance between the two metrics.

F1 = 2 ∗ precision ∗ recall
precision + recall

(4.5)

The F1 score favors classifiers that have similar precision and recall. Unfortunately, we can’t
have it both ways: increasing precision reduces recall, and vice versa.

• ROC AUC: The receiver operating characteristic (ROC) curve is another common tool used
with binary classifiers. It plots recall (true positive rate) against the false positive rate (FPR),
that is the ratio of negative instances that are incorrectly classified as positive. FPR is equal
to one minus the true negative rate (TNR), which is the ratio of negative instances that are
correctly classified as negative. The TNR is also called specificity. Hence the ROC curve
plots recall versus 1 – specificity.

ROC is a probability curve and the area under the curve (AUC) is a measure of separability.
It tells how much the model is capable of distinguishing between classes. Higher the AUC,
better the model is at distinguishing between patients with disease and no disease.

The unbalanced data set makes it difficult to optimize for the recall or other simple metrics,
so we decide to evaluate and tune the parameters over ROC AUC metric to obtain robust models.

Sensitivity which measures the portion of positive people that are correctly classified is the
most important metric. However, specificity which measures the portion of negatives that are
correctly classified becomes more important when the patients arrive at the hospital in order to
optimize the limited resources.
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Chapter 5

Results

We develop here the different models that we tried, their hyper parameter tuning and their
interpretabilty.

5.1 Logistic regression

Logistic regression is well suited for discovering links between features and outcomes.

We consider a single input observation represented by a vector of features x(i) = [x(i)1 , x(i)2 ,...,
x
(i)
d ]. The classifier can output y = 1 predicting that the patient is EVD positive or that they will

survive (or the opposite by outputting 0).

For a given patient x(i), we aim to find the probability of belonging to the positive class :

P (y(i) = 1) =
1

1 + exp(−(β0 + β1x
(i)
1 + . . .+ βdx

(i)
d ))

(5.1)

The interpretation of the weights in logistic regression is more cumbersome than in liner
regression the outcome being in logistic regression a probability. With the logistic function the
weights do not influence the probability linearly any longer. Therefore we need to reformulate
the equation for the interpretation so that only the linear term is on the right side of the formula.

log

(
P (y = 1)

1− P (y = 1)

)
= log

(
P (y = 1)

P (y = 0)

)
= β0 + β1x1 + . . .+ βdxd (5.2)
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We have shown that the logistic regression model is a linear model for the log odds. We know
ask ourselves how the prediction changes when one of the features xj is changed by 1 unit.

odds =
P (y = 1)

1− P (y = 1)
= exp (β0 + β1x1 + . . .+ βpxp) (5.3)

oddsxj+1

odds
=
exp (β0 + β1x1 + . . .+ βj(xj + 1) + . . .+ βpxp)

exp (β0 + β1x1 + . . .+ βjxj + . . .+ βpxp)

= exp (βj(xj + 1)− βjxj)
= exp (βj)

(5.4)

We conclude that a change in a feature by one unit changes the odds ratio by a factor of
exp (βj)

We tune the regularization by modifying its norm and value. We can see an example for the
L2 norm in Figure 5.1

Figure 5.1 – Hyperparameter tuning of the regularization term value

We don’t have significant differences between the 4 feature selection methods for diagnosis
and prognosis (see Table 5.1) For diagnosis, RFE required the lowest number of features (n=41)
features to achieve a similar performance (AUC of 0.8) to other models which required at least
10 more features. For prognosis, Lasso required the least number of features (n=5) to reach a
similar performance than the other models requiring over 15 features more.
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Table 5.1 – Results for logistic regression

Training
set

Test
set

Task
Feature

selection
method

Number
of features

selected
Accuracy AUC F1-score Accuracy AUC F1-score

61 0.74 0.82 0.81 0.70 0.77 0.79
RFE 41 0.74 0.81 0.80 0.72 0.77 0.80

F-test 61 0.74 0.82 0.81 0.70 0.77 0.79
Lasso 52 0.75 0.81 0.81 0.70 0.76 0.79

Diagnosis

HAC 53 0.74 0.81 0.81 0.71 0.77 0.79
62 0.69 0.74 0.45 0.63 0.67 0.34

RFE 23 0.69 0.74 0.47 0.64 0.64 0.40
F-test 22 0.69 0.74 0.5 0.65 0.68 0.41
Lasso 5 0.67 0.70 0.40 0.63 0.66 0.32

Prognosis

HAC 56 0.68 0.74 0.45 0.62 0.65 0.35

Figure 5.2 – Logistic regression after RFE for diagnosis
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Figure 5.3 – Logistic regression after lasso elimination for prognosis with 5 features : day of
admission in Gueckedou, residency in Macenta, abdominal pain, referral time and age

5.2 SVM

For classification tasks, logistic regression doesn’t consider the proximity of the points to the
decision boundaries. Intuitively, if a point is further a way from the decision boundary we can be
more confident in our prediction. Consequently, the optimal decision boundary is the boundary
that maximizes its margin with all data points. Support Vector Machines (SVM) find that decision
boundary.

A standard SVM aims to find a decision boundary with a maximal margin that separates all
positive and negative examples. However, this can typically lead to over fitting and high variance
especially with noisy data. We can make the model more robust with a "soft margin" allowing
some examples to be miss classified and to not be considered for the margin. This trade off
between training error and robustness is controlled by the regularisation parameter C that we
tune.

While the feature selection based on F-test score don’t remove any features after cross valida-
tion (see Table 5.2). HAC and Lasso with 10 less features perform the same with an AUC of 0.81.
Furthermore, SVM outperforms logistic regression for diagnosis and give equivalent results for
prognosis.
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Table 5.2 – Results for SVM

Training
set

Test
set

Task
Feature

selection
method

Number
of features

selected
Accuracy AUC F1-score Accuracy AUC F1-score

61 0.80 0.88 0.85 0.73 0.81 0.79
F-test 61 0.80 0.88 0.85 0.73 0.80 0.80
Lasso 52 0.79 0.87 0.85 0.73 0.81 0.81

Diagnosis

HAC 53 0.81 0.89 0.86 0.72 0.81 0.80
62 0.71 0.78 0.40 0.64 0.67 0.27

F-test 11 0.67 0.71 0.29 0.61 0.62 0.13
Lasso 5 0.67 0.68 0.18 0.64 0.65 0.12

Prognosis

HAC 56 0.70 0.77 0.40 0.63 0.64 0.28

5.3 KNN

The K Nearest Neighbor (KNN) classifier is a memory based algorithm and therefore it doesn’t
require any training. Given a patient, the algorithm finds the k nearest nearest patients in the
feature space and applies a majority vote to output the patient class. We tune how we define
distance between 2 points (Manhattan distance or Euclidean distance) and the number k of
neighbors considered (see Figure 5.4).

Figure 5.4 – Cross validation for the number k of neighbors

For diagnosis with the selection based on F-test score after cross validation we reduce the
number of features to 15 and obtain an AUC of 0.82 slightly superior to SVM. For prognosis the
results are equivalent than the other models (see Table 5.4).
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Table 5.3 – Results for knn

Training
set

Test
set

Task
Feature

selection
method

Number
of features

selected
Accuracy AUC F1-score Accuracy AUC F1-score

61 0.73 0.81 0.81 0.70 0.78 0.79
F-test 15 0.78 0.86 0.85 0.73 0.82 0.81
Lasso 52 0.73 0.81 0.81 0.71 0.78 0.79

Diagnosis

HAC 53 0.84 0.82 0.81 0.72 0.79 0.79
62 0.71 0.76 0.52 0.65 0.68 0.46

F-test 20 0.69 0.75 0.48 0.65 0.66 0.40
Lasso 5 0.72 0.79 0.52 0.64 0.68 0.35

Prognosis

HAC 56 0.70 0.75 0.53 0.64 0.67 0.42

5.4 Decision tree

Logistic regression models fail in situations where the relationship between features and outcome
is nonlinear or where features interact with each other. Tree models iteratively partition the data
on certain values of the features.

Several algorithms are used to create trees and they differ by structure. The classification and
regression trees (CART) algorithm is probably the most popular algorithm for tree induction.

To predict the outcome in each leaf node, the average outcome of the training data in this
node is used.

ŷ = f̂(x) =

M∑
m=1

cmI{x ∈ Rm} (5.5)

I{x ∈ Rm} is the identity function that returns 1 if x is in the subset Rm and 0 otherwise.

How does CART construct the tree? (in other words, how does it select the features on which
it splits the data?) CART takes a feature and determines which cut-off point minimizes the Gini
index of the class distribution of y. The Gini index tells us how "impure" a node is, if all classes
have the same frequency, the node is maximally impure, if only one class is present, it is "pure".
The Gini index is minimized when the data points in the nodes have very similar values for y.
The best cut-off point makes the two resulting subsets as different as possible with respect to the
target outcome.

The main drawback of decision trees is that they have many parameters to tune and tend to
over fit the training set.
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The parameters on which we focused are:

• Maximum depth: The deeper the tree, the more splits it has and it captures more informa-
tion about the data.

• Minimum number of samples to split: It represents the minimum number of samples
required to split an internal node. When we increase this parameter, the tree becomes
more constrained as it has to consider more samples at each node.

• Maximum number of features: It represents the number of features (randomly selected) to
consider when looking for the best split.

(a) Cross validation of the minimum number of split (b) Cross validation of the max depth

Figure 5.5 – Validation curve of decision tree parameters

Table 5.4 – Results for decision tree

Training
set

Test
set

Task
Feature

selection
method

Number
of features

selected
Accuracy AUC F1-score Accuracy AUC F1-score

61 0.77 0.85 0.82 0.74 0.80 0.80
RFE 19 0.78 0..87 0.84 0.75 0.80 0.82

F-test 12 0.71 0.79 0.79 0.75 0.77 0.82
Lasso 52 0.79 0.88 0.84 0.71 0.78 0.78

Diagnosis

HAC 53 0.77 0.86 0.82 0.74 0.80 0.80
62 0.70 0.76 0.50 0.65 0.67 0.40

RFE
F-test

1 0.69 0.75 0.44 0.58 0.66 0.27

Lasso 5 0.70 0.77 0.59 0.64 0.70 0.50
Prognosis

HAC 56 0.73 0.80 0.55 0.62 0.63 0.33

33



<

Fi
gu

re
5.

6
–

D
ec

is
io

n
tr

ee

34



Figure 5.7 – Decision tree after F-test selection for diagnosis

5.5 Ensemble Methods : Wisdom of the crowd

To answer complex questions, it’s usually better to have several expert opinions. That idea gives
rise to ensemble learning where a model aggregates the predictions of many predictors to make
a final prediction.

5.5.1 Bagging

Bagging (Bootstrap Aggregating) classifier is an ensemble method where each weak learner is
trained with a random subset of the data sampled with replacement (bootstrapping). It then
combines the weak learner’s predictions by outputting their average.

With 90 decision trees as weak learners, bagging slightly outperforms the other methods.
After F-test selection for diagnosis we obtain on the training set an Accuracy of 0.79, an AUC of
0.88 and F1 score of 0.85 while on the test set we get an Accuracy of 0.76, an AUC of 0.84 and F1
score of 0.83.

For prognosis we also we get a small improvement with on the training set an Accuracy of
0.78, an AUC of 0.84 and F1 score of 0.63 and on the test set an Accuracy of 0.6, an AUC of 0.72
and F1 score of 0.44.
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5.5.2 Extra trees and Random Forest

Decision trees suffer from being high-variance estimators, the addition of a small number of
extra training observations can dramatically alter the prediction performance of a learned tree,
despite the training data not greatly changing. By training weak learners on different subsets of
data the ensemble methods Extra Trees and Random Forest allow us to avoid over fitting with
the assumption that the aggregation step will eliminate the variance error.

Extra Trees and Random Forest are both composed of a large number of decision trees, where
the final decision is obtained by majority vote. The main two differences are the following:

• Random forest uses bootstrap replicas, for each tree it sub samples the input data with
replacement, whereas Extra Trees use the whole original sample which may increase
variance because bootstrapping makes it more diversified.

• Random Forest chooses the optimum split while Extra Trees selects it randomly. However,
once the split points are fixed, the two algorithms choose the best one among the entire
subset of features. Therefore, Extra Trees adds randomization but still has optimization.

These differences motivate the reduction of both bias and variance. On one hand, using the
whole original sample instead of a bootstrap replica will reduce bias but increase variance. On
the other hand, choosing randomly the split point of each node will reduce variance but increase
bias.

Figure 5.8 – ROC curve for Random Forest diagnosis
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Extra trees and Random Forest perform similarly to bagging classifiers with on the test set an
AUC of 0.84 for diagnosis (see Figure 5.8) and an AUC of 0.73 for prognosis. We can observe a
full analysis of Random Forest predictions on 5.9

Figure 5.9 – Results on the test set for Random Forest diagnosis
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5.6 Comparison with another study

The exact same pipeline has been applied to another study (EIXUZQ) with a smaller cohort size
of 870 patients where very similar information and symptoms have been collected (see Figure
5.10)

Diagnosis The best results are obtained with the Extra tree ensemble method without feature
selection, where we obtained on the test set an AUC of 0.77. This is 0.07 lower than in the first
data set and used 47 features (compared to 58 features above). Interestingly the features selected
were similar as shown in Figure 5.12.

Prognosis Here, lasso elimination retained just 3 features and achieved an AUC of 0.85. We
can explain the difference for the prognosis model by the fact that for the first study the cycle
threshold (CT) value of the EVD test which is the most important feature (see Figure 5.11) is not
present which makes it harder to predict the patient outcome. The CT value is the viral load
quantified by PCR and has been well established as a strong prognostic indicator.

Figure 5.10 – Correlation between the symptoms
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Figure 5.11 – Feature importance with Extra trees for prognosis

Figure 5.12 – Feature importance with Extra trees for diagnosis
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Chapter 6

Conclusion

Taken all together Machine Learning in general, has a lot of potential to predict EVD diagnosis
and severity and thus guide evidence-based triage decisions at minimal cost.

We emphasize the importance of exploring different feature selection methods and models
and prioritize interpretable methods that allow the user to understand the rationale of collecting
the required information and the importance of estimating it correctly. It’s hard to compare our
results with existing classical statistical (non-machine learning) methods as their evaluation is
not calculated in the same way (boostrapping vs an independent test set). With an AUC above
0.8 for diagnosis and prognosis on test sets, using a reasonable number of features, we have
obtained scores that make the models a promising and feasible addition to improve triage in
EVD.

It has been shown that more data improves predictive performance and robustness. Therefore
it is important to join the different studies. While there is a significant overlap across the different
studies, when we compared them we have encountered a lot of heterogeneity and systematic
differences that need to be aligned. This project lays the groundwork for more general models
trained on several studies leveraging distributed and federated learning.
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