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Abstract

Background

After 18 months of responding to the COVID-19 pandemic, there is still no agreement on the

optimal combination of mitigation strategies. The efficacy and collateral damage of pan-

demic policies are dependent on constantly evolving viral epidemiology as well as the vola-

tile distribution of socioeconomic and cultural factors. This study proposes a data-driven

approach to quantify the efficacy of the type, duration, and stringency of COVID-19 mitiga-

tion policies in terms of transmission control and economic loss, personalised to individual

countries.

Methods

We present What If. . .?, a deep learning pandemic-policy-decision-support algorithm simu-

lating pandemic scenarios to guide and evaluate policy impact in real time. It leverages a

uniquely diverse live global data-stream of socioeconomic, demographic, climatic, and epi-

demic trends on over a year of data (04/2020–06/2021) from 116 countries. The economic

damage of the policies is also evaluated on the 29 higher income countries for which data is

available. The efficacy and economic damage estimates are derived from two neural net-

works that infer respectively the daily R-value (RE) and unemployment rate (UER). Rein-

forcement learning then pits these models against each other to find the optimal policies

minimising both RE and UER.

Findings

The models made high accuracy predictions of RE and UER (average mean squared errors

of 0.043 [CI95: 0.042–0.044] and 4.473% [CI95: 2.619–6.326] respectively), which allow the

computation of country-specific policy efficacy in terms of cost and benefit. In the 29 coun-

tries where economic information was available, the reinforcement learning agent
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suggested a policy mix that is predicted to outperform those implemented in reality by over

10-fold for RE reduction (0.250 versus 0.025) and at 28-fold less cost in terms of UER

(1.595% versus 0.057%).

Conclusion

These results show that deep learning has the potential to guide evidence-based under-

standing and implementation of public health policies.

Introduction

The unprecedented speed and scale of the COVID-19 pandemic necessitated rapid implemen-

tation of untested public health measures to mitigate the consequences of viral spread [1].

These policies created massive collateral economic damage from which it is predicted to take

decades to recover [2], especially for low-resource settings and marginalised populations [3].

When selecting mitigation strategies, the optimal trade-off between lives vs livelihoods (i.e bal-

ancing the life-saving benefits of mitigation strategies vs their livelihood-damaging economic

costs) is not obvious [4], and perceptions differ according to a volatile mix of socioeconomic,

demographic and cultural features that vary between countries and evolve over time. There is

a growing appreciation that decisions based on such vastly complex and dynamic data require

the advanced pattern detection of deep learning networks [5].

Indeed, the torrent of information generated during COVID has been described in epi-

demic terms, where the growth rate of scientific publications rivalled the virus itself. Several

large scale data trackers have attempted to validate and synthesise the data into massive open-

access live-stream global repositories (e.g. for policies (OxCGRT [6]) and proxies of their effi-

cacy such as viral transmission and deaths (Johns Hopkins [7], ourworldindata [8, 9]) or

mobility (Google [10])). Palantir’s Foundry, designed to curate and integrate vast live data

streams, is used in this study to integrate and transform such data sources into a single unified

data asset for analysis, modelling, and decision-making. [11]. Nevertheless, mining this data

remains complex, and only few studies have attempted to provide models for policy decision

support. Furthermore, they are mostly limited in their scope, often only focus on single coun-

tries [12–14], single policies [15, 16], single impact measures [17] or a finite time span [18].

Many do not make use of machine learning for updatable insights compatible with real time

data streams and most only provide retrospective analyses, associating policies to proxies of

the assumed impact.

Inferring causality from such models (for example, attributing the implementation of policy

x to an impact in a proxy measure of efficacy) is not straightforward. The longitudinal nature

of the problem embeds time-dependent confounders that may contaminate the assignment of

causality, where the duration or sequence of implemented policies erode or synergise their uni-

variate impact [19]: an issue that would bias the computation of counterfactual analysis pro-

posed by this study.

This work attempts to provide evidence-based policy-decision-support (PDS), not only to

tailor responses to the specific contexts of individual countries, but also to optimise them

according to a target cost-benefit trade-off.
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Materials and methods

Study design

This study leverages a diverse global data stream to build two predictive models that infer the

impact of the two measures on which we aim to create a trade-off, i.e. viral transmission (effec-

tive reproduction number, RE) versus economic cost (unemployment rate, UER). A reinforce-

ment learning agent (RLA) then pits the two models against each other to find the policy

combination that best minimises both metrics.

The RLA recommends optimal policies for a simulated month, with the allowance of gener-

ating weekly policy changes in 1-step stringency increments or decrements. The outputs can

be adapted to customisable counterfactual What If. . .? scenarios, where one can specify the

RLA’s optimal trade-off between RE and UER. Finally, the predictive models are also explored

with a derivation of SHAP values [20] for deep learning models, which are used to infer the

impact of each policy for each country on the predicted measures.

Data sources

The start date of data used aligns with the WHO pandemic declaration and spans over a year

from 01/04/2020–31/05/2021. Predictions of both models are made on a temporal scale of a

day and at the geographic resolution of a country. While this study relies on a uniquely diverse

live global data stream that was curated by the Swiss Re Risk Resilience Center [21], it is

sourced from benchmark sources as summarised in S1 Table.

S2 Table reports the features used in each model. Only features collected before (and

including) the date of the predicted value are considered in the prediction (thus the model

only uses past data to predict into the future). The data considered includes:

• Standardised COVID Policies features: The type, duration and stringency of global COVID

mitigation policies implemented in each country as curated in the Oxford COVID Govern-

ment Response Tracker (OxCGRT) [6], which comprises 12 policy types (cancel public
events, close public transport, testing level, contact tracing, vaccination policy, international
travel controls, public information campaigns, gathering restrictions, internal movement
restrictions, school closing, stay at home requirements, and workplace closing) with date-

stamped implementation histories categorised into stringency levels normalised across 186

countries.

• Country-specific characteristics features: A set of socioeconomic (e.g GDP), demographic

(e.g. total population stratified by age) and climatic (e.g temperature) features. The two mod-

els (RE and UER) made use of slightly different combinations of these features, where for

example unemployment rate was included in the RE model as a predictor but excluded from

the UER network as it represented the predicted label. Similarly, no epidemic features were

used in the RE model, but the measured RE was used as a feature in the UER model. These

features are available for 168 of the 186 countries included in the OxCGRT dataset.

• RE label: The daily RE is the ground truth of the first model and was obtained following the

formula described by Abbott et al. [22], with a moving average of 12 weeks. A reporting arte-

fact occurred in the presence of extremely low case numbers (generally at the beginning of

the pandemic), resulting in an artificially inflated RE value. To limit this effect, we discarded

the estimations of RE that were greater than 4, which was epidemiologically implausible

according to the transmission dynamics of the initial wild type and alpha variants reported

to be in circulation at the start of the pandemic [23].
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• UER label: We linearly interpolate quarterly reported/forecasted values of UER to obtain

daily estimates. Forecasted values are predicted by unspecified means by the cited source in

S2 Table. We then predict the UER deviation compared to the baseline measurement at the

beginning of the pandemic (31/12/2019).

Country selection

The list of countries for each model (RE and UER) is available in S3 and S4 Tables.

Geographic scope of the RE model. Of the 186 countries represented in the OxCGRT

dataset, 168/186 (90%) had the required socioeconomic features. Of these, 116/168 (69%) met

the inclusion criteria of the RE model described hereafter (excluding 52 countries). Firstly,

countries with fewer than 2000 COVID-19 cases were removed (n = 6) as such data sparsity is

not informative to the model and is sometimes indicative of poor case reporting such as Tan-

zania, which stopped reporting in May 2020 after just 500 cases. The remaining 46/52 coun-

tries were excluded for not having available data for the features required by the predictive

models. The retained countries represent roughly 90% of the global population across a wide

variety of sociodemographic settings from each continent. It covers a GDP range of 1.4 to

17900 billion USD (measured on 31/12/2020) with an average urban population of 60% (com-

pared with 64% globally according to the World Bank data sources).

Geographic scope of the UER model. Of the above selected countries, only 29/116 (25%)

provided suitable labels that could be validated for the UER model. Indeed, unemployment

rate is more challenging to collect and data quality standards (absence of null values, values up

to 31/03/2021 collected and not forecasted), were only met in few countries. To ensure that we

limited assumptions to the most represented subset, we focused on high income settings

within close geographic proximity as a proof-of-concept, including 27 states from the Euro-

pean Union as well as neighboring Switzerland, Norway and the UK. When applying the same

filters as above, only Poland was excluded due to missing key features. Thus, the economic

component of this work is limited to higher income countries. We hope the results can serve

advocate for the potential value of regular economic reporting in lower resource settings. This

work is open source so that new data can be added as it becomes available.

Model architecture

The code for all models is available at this link.

The features used to predict RE and UER are a mixture of time-dependent (e.g. weather)

and time-invariant (e.g. GDP) features. To deal with this mixed-type data, we created a hybrid

deep learning model combining a recurrent neural network in the form of a Long short-term

memory (LSTM) [24] and a multilayer perceptron (MLP). This latter fully connected part

takes the constant features as input while the LSTM was employed to analyse sequential trends

(Fig 1). More specifically, the two-headed network consists of:

• First head. One LSTM layer, reserved for time-dependent features, with a hidden size of 20.

• Second head. One linear (fully connected) layer of 50 neurons for the time-invariant features,

followed by a ReLU activation function.

• Body. Two linear layers with two ReLU activation functions. The first layer has 15 neurons,

the second (output) has one. The ReLU on the output is applied given the nature of the prob-

lem (negative RE or UER are impossible).
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To reduce over-fitting, a dropout layer is placed after each layer with a dropout probability

of 0.2. In addition, we employed early stopping conditional to loss stagnation for five epochs.

Here, the model restores the weights captured from the epoch corresponding to the best vali-

dation loss value.

The memory window of the LSTM layer can be parameterised in the number of days. A

memory window of n days means that to predict the output at a day d, the time series corre-

sponding to the sequential feature values on days d − (n + 1), d − n, . . ., d − 1 and d are used as

inputs. The RE model uses a memory window of seven days, where the forecasting horizon is

zero, as we use data from seven days before day d to predict only the RE of day d. In contrast,

the UER model uses a widened memory window of 28 days. As described above, the UER is a

quarterly measure which was interpolated to daily point estimates. To ensure the actual mea-

sured UER have a higher importance than the interpolated ones, a weight between zero and

one was assigned to each interpolated value according to their proximity to the true reported

value (where the weight is linearly eroded to zero according to the distance from the nearest

measurement date). This gradual reduction of “importance weighting” for interpolated values

further away from the date of the actual measurement, reduces the likelihood of error intro-

duced by the linear interpolation while providing the models with more training data.

Model validation

A leave-one-out cross-validation strategy was used to validate the performance of our models,

where each fold corresponds to a unique country, i.e., for each validation step, a different

country is isolated, the model is then trained on the data from all other countries and then vali-

dated on the isolated country. These cross-validation subsets, allow the model to predict the

evolution of a feature in one country by using data from other “similar” countries. It also better

accounts for temporal confounders where the duration or sequence of implemented policies

erode or synergise their univariate impact. For instance, if lockdown was implemented several

Fig 1. Neural network architecture. Architecture of the hybrid neural network model for predicting RE. Constant

inputs denote the time-invariant input features.

https://doi.org/10.1371/journal.pgph.0000721.g001
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days after a gathering ban, the effect of lockdown might be diluted. Thus, our model would

learn from similar contexts where policies were implemented in different orders, allowing

more reliable estimates of policy impact as described below.

Policy impact estimates

Of the twelve policies in the OxCGRT dataset, nine are explored for their impact on RE. Two

policies were not considered (Testing level and Contact tracing) due to their power to modulate

case reporting i.e. fewer tests/contact tracing results in an artificially lowered RE due to lower

case discovery which makes impact estimates on these policies pointless. Vaccination policy is

excluded as our aim was to estimate the impact of non-pharmaceutical interventions.

To estimate the policy impact in terms of RE, we relied on expected gradients [25], which

approximate SHAP values [20] for deep learning models. The purpose of this algorithm is to

map the final prediction on the input features in terms of impact, indicating the quantitative

contribution of features to the output value.

For a single country, the RE was computed for D different days. With a standard MLP archi-

tecture, this means that expected gradients would return a D × F matrix, where F is the number

of features. To have a single, global importance for each feature, we would then average on the

rows of this matrix. However, in our case, we were interested in computing the importance of

each policy, which is variable over time and thus is fed into the LSTM layer of our hybrid

model. This means that, considering a memory window of n days, the output shape of

expected gradients is D × n × F (where D is equal to seven (consecutive days) in this case,

being the memory window of the LSTM layer), as each feature value contributes to n predic-

tions. Fig 2 better explains this concept: for a single feature (policy), the output is a D × n
matrix. The dots of the same color represent the fact that a single value is taken into account in

n different predictions. Given that, we averaged over the diagonals of this matrix, computing

the importance of each unique value of the considered policy. We then computed a global

average to obtain a single feature importance. Finally, the values are normalised to a min-max

[0; 1] interval, where 0 represents the lowest possible importance.

Reinforcement Learning Agent (RLA)

The RLA seeks the best combination of non-pharmaceutical policies to minimise both RE and

UER given a country’s epidemic and socioeconomic situation. To achieve this, the agent is

trained on the predictions of the two networks presented above. In particular, the agent mod-

els the impact of various permutations of policies at various stringency levels and receives a

reward proportional (in percentage) to the reduction of either RE or UER, as shown in Algo-

rithm 1.

Some modifications to the features used in both networks of this task were necessary; since,

for example, it is impossible to predict future weather with high accuracy, these features were

thus excluded from the training of the two RE and UER networks. We show in Section RE and
UER models used in reinforcement learning that this change does not affect performances.

All vaccination features were also eliminated for the same reason.

RLA constraints. Action space. With nine policies at four stringency levels, the number of

permutations in the RLA action space for a single decision is too large (approximately 49) for

standard RL algorithms such as Policy Gradient or Deep Q-Learning (DQN).

We thus re-examined the problem from a continuous perspective viewing each policy as a

continuous number, with the output of the RLA being between −1 and 1. We then add this

vector to the policy vector of the week before to obtain the new set of policies.
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As the final policy mix is continuous, the network may set a policy to a negative value or a

value that is out of range according to our data. Because it is not realistic to set policies to a

negative state (e.g. there is no state of “anti-lockdown”), the policies are bounded between 0

and the highest value of the policy according to OxCGRT dataset. The policies are also

rounded to integers for better interpretability and standardisation.

Policy change frequency. In order to reduce the model’s variability, we permit the agent to

change policies every seven days over a 28-day period. Thus, the model makes four predictions

each 28 days, proposing the best set of policies to apply for the following weeks.

Recommended policy variability. To ensure a sensible variability to policy recommendations

the agent is restricted to making 1-notch stringency increments or decrements in policies each

week. This means that if in week w policy p had a value of x, in week w+1 this value will be in a

range between [x − 1, x + 1]. This avoids the unrealistic scenario of having a strict lockdown in

one week and then no restrictions at all in the next.

Trade-off threshold. The RLA explores the policy space, receiving rewards proportional to

how much a specific policy mix minimises the two indicators (RE and UER) together, in per-

centage with respect to the starting value. While the current work gives these equal impor-

tance, it is possibile to give more weight to one of the two indicators with respect to the other.

RLA architecture. The network’s input consists of the set of policies adopted during the

previous four weeks with respect to the prediction. This means that the network computes the

Fig 2. Diagonal mean—Feature importance. Mean of diagonal means to compute a single importance value for a single feature in the context of an

LSTM model.

https://doi.org/10.1371/journal.pgph.0000721.g002
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optimal policy set for the first week in the future given the policies adopted during the last four

weeks and the associated RE and UER, which are used to compute the rewards of the agent.

For the second week, the input will consist of the actual policies adopted in the last three weeks

plus the predicted policies of week one, and so on. Thus, the state space size is a 4 × 9 matrix,

which is then flattened before being fed to the network. The RLA is based on a Deep Deter-

ministic Policy Gradient (DDPG) algorithm. Algorithm 1 shows the model training loop,

given the DDPG agent and the considerations made before. Our results are obtained training

the model for 5000 episodes for each target country. In particular, we adopt the same leave-

one-out-validation methodology: the RE and UER models are trained on all the countries

except for the target one, and their predictions are then used in the training of the agent.

Algorithm 1: RL agent training loop
Result: Best policy mix for each week (st)
Select a country;
Train the reproduction rate (RE) and unemployment rate (UER) networks
on all the other countries;
Initialize the DDPG agent with state space and action space sizes σ
and α;
Initialize the RE weight ωr 2 [0, 1] and the UER weight ωu = 1 − ωr;
for episode = 1, M do
Set st to the policy levels of the last 4 weeks for the selected

country;
Predict the initial RE and UR given st;
for step = 1, number of future weeks do
Select action at = agent(st);
To create the new state st+1 delete the first α elements from st

andreplicate the last α elements at the end of st. Then, sum at to the
last Predict RE+1 and UER+1 from st+1;

Set reward rt1 to RE � REþ1

RE
� 100;

Set reward rt2 to UER� UERþ1

UER � 100;
Set rt ¼ or � rt1 þ ou � rt2;
Store transition (st, at, rt, st+1) in the agent memory;
Train the agent;
Set st = st+1;

end
end

Results

RE model

Using all features in S2 Table, we obtain an average MSE (aMSE) of 0.043 with a 95% confi-

dence interval of [0.042, 0.044] for the prediction of RE across all 116 countries considered.

The MSE of each country is reported in S3 Table. Fig 3 shows the predicted RE for three

randomly selected example countries on three different continents compared to the

ground truth of the reported RE estimation (Switzerland (CHE), Morocco (MAR) and Peru

(PER)). As observed, the predicted RE follows quite closely to the ground truth value in all

three countries despite the vastly different combination of mitigation policies implemented

as well as the underlying differences in geography, culture and socioeconomic context.

These results are forecasted, where the model uses past data to make predictions over a

7 day period.
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Policy impact

The full list of policy impacts in terms of SHAP values for the nine policies across all 116 coun-

tries is presented in a heat map in Fig 4. We observe the anticipated result that each policy has

a different impact ranking in relation to the context in which it was applied.

To illustrate our claim, we show the policy impact rankings of the same three example

countries as above Fig 5. A stark example of the differences of policy effectiveness between

countries is seen in “Lock Down” (Stay at Home Requirements), which proved highly effective

in Switzerland and Morocco, but was only minimally associated with decreased transmission

in Peru. The effectiveness of lockdown-type measures in Switzerland and Morocco (and the

failure of lockdown in Peru) are supported by independent studies [26–28].

Fig 3. Reproduction rate predictions for three sample countries. RE prediction (orange) for Switzerland (CHE), Morocco (MAR) and Peru (PER).

The ground RE is shown in blue, and the absolute error (absolute difference between the prediction and ground truth) in green.

https://doi.org/10.1371/journal.pgph.0000721.g003
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Fig 4. Policy impact score—116 countries. Relative policy impact score for 116 countries and nine policies. It represents how much a policy affects the

RE on each country on average. The more red the color, the lower the impact.

https://doi.org/10.1371/journal.pgph.0000721.g004
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Unemployment rate model

Using the features listed in S2 Table, we obtain an average MSE (aMSE) of 4.473 percentage

points with a 95% confidence interval of [2.619, 6.326] over the 29 countries considered in pre-

dicting UER. Fig 6 shows the predicted UER for three randomly selected example countries

compared to the ground truth of the reported (and interpolated UER estimation (Switzerland

(CHE), France (FRA) and Denmark (DNK)). As observed, the predicted UER follows quite

closely the ground truth in all three countries despite a vastly different combination of mitiga-

tion policies implemented as well as the underlying differences in geography, culture and

socioeconomic context. There are, however, errors in the prediction (notably CHE), which are

likely attributable to gaps in the predictive capacity of the model, but may also be an indication

Fig 5. Policy impact for three sample countries. Relative policy impact for (top to bottom) Switzerland, Morocco and Peru. An high impact score

(green bars) is associated to a reduction of the RE.

https://doi.org/10.1371/journal.pgph.0000721.g005
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of whether the country performed as “expected” compared to other “similar” countries. This is

a possible conclusion due to the leave-one-out-validation strategy, which computes error as

compared to other countries. For example, if a country had predictions of UER below the real

value, this could indicate that the country suffered more than expected, and vice-versa.

The MSE of each country is reported in S4 Table, where we highlight a significant outlier,

Spain, with an MSE of 25.1380 percentage points, perhaps indicating that more diverse and

accurate data is needed, in addition to the considerations mentioned above.

Predicting the best policy combination

RE and UER models used in reinforcement learning. The reinforcement learning model

uses the two networks predicting RE and UER trained on feature set listed in S2 Table. Given

the leave-one-out-validation methodology, there is no leakage between the two networks train-

ing set and the agent, which is rewarded according to the predictions made on the testing

country. The minor feature set changes had little impact on individual model performance,

where the global MSE was 0.0416 CI95 [0.032, 0.051] for RE and 4.4495 CI95 [3.645, 5.254] for

UER (compared respectively to 0.043 CI95 [0.042, 0.044] and 4.473 CI95 [2.619, 6.326] for pre-

dictions using the original feature sets). A two-sample t-test confirms that the differences in

the means are not significant (the p-values are respectively 0.771 and 0.988). S5 and S6 Tables

show the MSE when predicting the RE and UER for the 29 considered countries with the new

feature sets.

RLA versus human policymakers. To evaluate our model in terms of the efficacy of poli-

cies selected by (human) policymakers in reality versus those recommended by our RLA, we

compute the RE and UER trends predicted for the counterfactual scenario of implementing the

policies recommended by our RLA for each of the four weeks. We select random time points

on which to test these trends.

Fig 6. Unemployment rate predictions for three sample countries. Unemployment rate predictions for (top to bottom) Switzerland, Denmark and

France. The ground unemployment rate is shown in blue, the predicted unemployment rate in orange.

https://doi.org/10.1371/journal.pgph.0000721.g006
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S7–S9 Tables list differences in policy impact between human policymakers versus the RLA

for all 29 countries for three randomly selected time periods. S10 Table shows the mean of

these differences.

In our simulations, the RLA has the same reward threshold for RE and UER. In a randomly

selected one month time span (12/04/2021–09/05/2021), the average difference between the

reported RE and the predicted RE when adopting the RLA-suggested policies is 0.211. As for

the UER this difference is of 1.393 percentage points. Thus, the RLA policies are predicted to

reduce RE and UER. The simulation on the other two randomly selected time spans follow the

same trend, with better results for the two metrics than what was implemented in reality.

As a proof of concept, we show the weekly effect of the best policy mix for Switzerland

(Fig 7) and the related policy levels that the network suggested (Fig 8) in the time period of 12/

04/2021–09/05/2021. The results are promising as we were able to significantly predict a

reduction in both the pandemic RE and the unemployment rate with respect to the starting sit-

uation without necessarily enforcing the highest level for each restriction. The recommended

policies in Fig 8 are interpretable and implementable. We can see that the RLA recommended

highly stringent workplace closures along with intensive international travel controls, and a

moderate stay-at-home requirement in addition to minimal restrictions on public transport,

gatherings and events. This is a contrast to the implemented policies in Switzerland at the

time, which included a higher level of restrictions on gatherings, but a lower level of workplace

closing.

Discussion

This work explores how the public health policies implemented during the COVID-19 pan-

demic were related to country-specific patterns in the reported metrics they were presumed to

Fig 7. Effect of the best policy mix on Switzerland. Effect of the best policy combination on the RE and UER (12/04/2021–09/05/2021). The green

line refers to the best policies predicted by the RLA. The red line is the true, measured, value.

https://doi.org/10.1371/journal.pgph.0000721.g007
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impact. It aims to provide insight into the costs and benefits of public health policies and create

an analytical framework for guiding a country-specific optimised policy response. While it was

trained on COVID-19 data, the framework could be adapted to future outbreaks with other

pathogens or the public health response to non-infectious diseases.

The vast and diverse dataset used in this study allowed the models to attain high-accuracy,

country-specific predictions on a large geographic scope. For instance, the estimates for “best

policy combination” by our reinforcement learning agent achieved the same or better results

(reduction in both RE and UER) than what was implemented in reality for every country inves-

tigated. Our results are unique in the literature, as the first public health policy decision sup-

port system suggesting the best customized policy mix tailored to the data of a specific

country.

There are several limitations that must be mentioned. Firstly, it is important to note that

this work specifically does not comment on the association between the metric predicted and

the actual ground truth of that metric. That question would likely require large-scale coordi-

nated primary data collection. Rather, we estimate how this reported metric (irrespective of its

association with reality) would change in light of reported policy changes. As many policy-

makers use these metrics to measure relative policy effectiveness (usually with an understand-

ing of their relationship to reality), our work thus attempts to align with the information that

policymakers use routinely. Additionally, while our RE model covers approximately 90% of the

global population, we restrict the UER model to countries where economic reporting is avail-

able and likely to be interoperable. More data is needed to extend the geographic scope of this

model and we hope that the encouraging results from this work may help advocate for more

regular and reliable reporting in lower resource settings.

As for all machine learning models, we could not predict random events. Indeed, the RE
can be sensitive to super-spreader or localised transmission events, although it could be argued

that these missed peaks do not represent transmission in the general population and are

Fig 8. Predicted best policy mix for Switzerland. Starting from 12/04/2021 (included) for the following 28 days, compared to the actual implemented

policies. Each of the nine policies are either not implemented (stringency of zero in green) or implemented in one of five levels of stringency (shaded

green!yellow!red).

https://doi.org/10.1371/journal.pgph.0000721.g008
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therefore not under the direct control of public policies that are being investigated by the

model. Another limitation is that our models assume legislative homogeneity within a country.

However, this is certainly not the case for countries with autonomous sub-jurisdictions (i.e.

decentralised state/provincial legislative bodies) where policies and transmission may vary

considerably. While our approach can be adapted to finer-grained sub-geographies given

appropriate data, we chose to report at a country level to maximise the number of included

regions.

Lastly, errors in the predictions of RE and UER are reflected in the Reinforcement Learning

Agent training. This could over- or under-estimate the efficacy of the chosen policies in abso-

lute terms. However, we can argue that those policies still represent the best option, even if the

reduction achieved in reality, in terms of RE and UER, when they are applied, is smaller than

the predicted one.

Taken together, it is clear that policy decision support systems like this one are strictly not

designed to replace expert opinion but rather to assist experts better understand the data on

which they base their decisions.

Conclusion

What if. . .? represents a new approach to guide policymakers in their decisions, whilst also

supporting their strategy with objective data that facilitates communicating the logic of the

intervention to the general population. The data-stream provides real time updates and we

plan to release a public online platform in the near future. The platform will allow users to sim-

ulate hypothetical What If. . .? scenarios, and provide them with an evaluation of the policy

response as well as a suggested “best” set of policies to adopt given their country’s specific char-

acteristics. The code is available in a fully open source repository at this link.
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19. Robins JM, Hernán MÁ, Brumback B. Marginal Structural Models and Causal Inference in Epidemiol-

ogy. Epidemiology. 2000; 11(5). Available from: https://journals.lww.com/epidem/Fulltext/2000/09000/

Marginal_Structural_Models_and_Causal_Inference_in.11.aspx.

20. Lundberg S, Lee SI. A Unified Approach to Interpreting Model Predictions. Adv Neural Inf Process Syst.

2017 may;2017-December:4766–75. Available from: https://arxiv.org/abs/1705.07874v2.

21. Swiss Re Institute | Swiss Re;. Available from: https://www.swissre.com/institute/.

PLOS GLOBAL PUBLIC HEALTH What if. . .? A pandemic policy simulator

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0000721 August 24, 2022 17 / 18

https://www.pnas.org/content/117/35/21201
http://www.ncbi.nlm.nih.gov/pubmed/32788356
https://www.oecd-ilibrary.org/content/data/4229901e-en
https://www.oecd-ilibrary.org/content/data/4229901e-en
https://doi.org/10.1038/s41598-021-88314-4
http://www.ncbi.nlm.nih.gov/pubmed/33958617
https://link.springer.com/article/10.1007/s10994-020-05928-x
http://www.ncbi.nlm.nih.gov/pubmed/33318723
https://www.nature.com/articles/s41562-021-01079-8
https://www.nature.com/articles/s41562-021-01079-8
http://www.ncbi.nlm.nih.gov/pubmed/33686204
https://doi.org/10.1016/S1473-3099(20)30120-1
http://www.ncbi.nlm.nih.gov/pubmed/32087114
https://www.nature.com/articles/s41597-020-00688-8
http://www.ncbi.nlm.nih.gov/pubmed/33033256
https://www.nature.com/articles/s41562-021-01122-8
https://ourworldindata.org/coronavirus
https://www.palantir.com/palantir-foundry/
https://arxiv.org/abs/2008.00646v2
https://arxiv.org/abs/2004.12338v1
https://science.sciencemag.org/content/368/6489/395https://science.sciencemag.org/content/368/6489/395.abstract
https://science.sciencemag.org/content/368/6489/395https://science.sciencemag.org/content/368/6489/395.abstract
https://science.sciencemag.org/content/368/6489/395https://science.sciencemag.org/content/368/6489/395.abstract
http://www.ncbi.nlm.nih.gov/pubmed/32144116
http://www.nber.org/papers/w27099
http://www.nber.org/papers/w27099
https://interactives.lowyinstitute.org/features/covid-performance/
https://interactives.lowyinstitute.org/features/covid-performance/
http://www.thelancet.com/article/S1473309920307854/fulltexthttp://www.thelancet.com/article/S1473309920307854/abstracthttps://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30785-4/abstract
http://www.thelancet.com/article/S1473309920307854/fulltexthttp://www.thelancet.com/article/S1473309920307854/abstracthttps://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30785-4/abstract
http://www.thelancet.com/article/S1473309920307854/fulltexthttp://www.thelancet.com/article/S1473309920307854/abstracthttps://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30785-4/abstract
http://www.ncbi.nlm.nih.gov/pubmed/33729915
https://journals.lww.com/epidem/Fulltext/2000/09000/Marginal_Structural_Models_and_Causal_Inference_in.11.aspx
https://journals.lww.com/epidem/Fulltext/2000/09000/Marginal_Structural_Models_and_Causal_Inference_in.11.aspx
https://arxiv.org/abs/1705.07874v2
https://www.swissre.com/institute/
https://doi.org/10.1371/journal.pgph.0000721


22. Abbott S, Hellewell J, Thompson RN, et al. Estimating the time-varying reproduction number of SARS-

CoV-2 using national and subnational case counts. Wellcome Open Res. 2020 dec; 5:112. Available

from: https://wellcomeopenresearch.org/articles/5-112

23. Adam D. A guide to R—the pandemic’s misunderstood metric. Nat. 2020 jul; 583(7816):346–348.

https://doi.org/10.1038/d41586-020-02009-w PMID: 32620883

24. Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Comput. 1997 nov; 9(8):1735–80.

Available from: http://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf. PMID:

9377276

25. Erion G, Janizek JD, Sturmfels P, Lundberg SM, Lee SI. Improving performance of deep learning mod-

els with axiomatic attribution priors and expected gradients. Nat Mach Intell. 2021 may; 3(7):620–631.

Available from: https://www.nature.com/articles/s42256-021-00343-w.

26. Lemaitre JC, Perez-Saez J, Azman A, Rinaldo A, Fellay J. Assessing the impact of non-pharmaceutical

interventions on SARS-CoV-2 transmission in Switzerland. medRxiv. 2020. PMID: 32472939

27. Zakary O, Bidah S, Rachik M. The impact of staying at home on controlling the spread of covid-19:

Strategy of control. Rev Mex Ing Bioméd. 2021; 42(1):10–26.

28. Taylor L. Covid-19: Why Peru suffers from one of the highest excess death rates in the world. BMJ.

2021; 372. PMID: 33687923

PLOS GLOBAL PUBLIC HEALTH What if. . .? A pandemic policy simulator

PLOS Global Public Health | https://doi.org/10.1371/journal.pgph.0000721 August 24, 2022 18 / 18

https://wellcomeopenresearch.org/articles/5-112
https://doi.org/10.1038/d41586-020-02009-w
http://www.ncbi.nlm.nih.gov/pubmed/32620883
http://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://www.nature.com/articles/s42256-021-00343-w
http://www.ncbi.nlm.nih.gov/pubmed/32472939
http://www.ncbi.nlm.nih.gov/pubmed/33687923
https://doi.org/10.1371/journal.pgph.0000721

